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SUMMARY

Our aim for 1992 was to investigate whether modern quantum mevhanical method cal
be useful in the study of interfaces be:ween dissimilar materials, and to complete at least a mod
est piece of work to demonstrate feasibility. This has been achieved.

We developed an approximate quantum mechanical approach to the problem of dissim)
lar transition-metal interfaces. Because of its approximate nature, we have devoted a large effort
to testing the scheme against experiment and first-principles theory. Our expertise in local den-
sity functional theory has allowed us to draw upon our first-principles capability both in deier-
mining parameters for our model Hamihonian, and in testing it.

We have studied in some detail a lattice-mismatched interface between pure Mo and Re
metals (Section 2). Our conclusions concerning this system are that the shear strength of the
interface is diminished from the theoretical strength by a factor of about twenty; the reduction I.,s
due to the presence of a misfit dislocation that glides in the interface during deformation. This
factor is still some orders of magnitude smaller than the reduction of theoretical strength of per-
fect crystals by lattice dislocations. Therefore, while the strength of a mismatched interface is
expected to be less than that of a lattice matched one (all other things being equal, the misfit
dislocation is not expected to significantly weaken the bicrystal (Section 3).

In order that we can begin to study systems of arbitrary chemical compositon. such as
aluminide alloys, nonmetal impurities in metal interfaces, and the metal-ceramic interface. výe
will need a general, first-principles, molecular-dynamics capability. Part of our proposal con-
cerned our continuing development of such a scheme, and we report progress, on this (Section 6).

In conclusion, in the short time available we believe useful results can emerge from
quantum mechanical calculations that have some bearing upon engineering practice. Our work is
sufficiently complete that we have some concrete results to report; at the same time there is much
to continue in the same vein in the near future.
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1. AIMS AND ACHIEVEMENTS

A large effort is under way to understand welded and diffusion-bonded joints between
dissimilar materials. There is a number of outstanding questions concerning the weldabilty of
traditional engineering materials. Also, newer materials are emerging and we want to learn hov.
to bond them together. For example, modern ceramic materials allow the uses of very high
engine temperatures and we need to know how to join these to underlying metal components.
Hence, it is increasingly important to understand the metal-ceramic interface from a very funda-
mental point of view. I Certain refractory metals are again being developed for applications in
nuclear engines and as energy convertors in the space program,2 after having been set aside
because they were thought less useful as engineering materials. An advantage of many of these
metals is that they are weldable.3

The work undertaken for the present ONR contract is to study fundamental aspects of
metal joining. The question is, whether recently developed quantum mechanical approaches to
materials science can be useful in the context of the design of weldable materials. This is a high-
risk program since so far no-one has attempted to use these new methods in the context of such
complicated systems. However, the payoffs can be very great if this research will lead to our
goal of first-principles criteria of weldability.

Certainly, the understanding of the strengths of dissimilar metal interfaces requires an
investigation of the quantum mechanical nature of the bonding between atoms. A purely classi-
cal approach cannot arrive at a proper description, since the chemical bond is a quantum mechan-
ical phenomenon. Therefore we require that our atomistic simulations of interface structure be
quantum mechanically based, even if they cannot be completely "first-principles."

We intended that at the end of the first year (1992) we would have completed a feasibility
study as well as arming ourselves with suitable results to make the first-year report describe a
rather complete piece of research. This we have accomplished. We chose to pursue the follow-
ing line of research:

1. Decide on a dissimilar metal interface to study.

2. Develop an approximate quantum mechanical description (Hamiltonian) for both
metals and their alloys, which includes a prescription for interatomic forces.

3. Use molecular statics simulations to find the equilibrium, zero-temperature strength.
and structure of the interface.

4. Evolve a plan of future work on this system.

These four items are discussed in the followving four sections.

Our approach has been to use empiric,l quantum theory because current first-principles
methods are too computer-intensive to be appicable to problems involving more than a few tens



of inequivalent atoms. Furthermore, the calculations of interatomic forces are still problenatical.
Both these difficulties can be removed using a new band-structure method that is currently under
development. We briefly report progress on this in Section 6.
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2. THE Mo/Re INTERFACE

As mentioned, there is renewed interest in refractory metals for use in high-temperature
applications under conditions of hydrogen environments or neutron fluxes. For example, Mo,
Re, and Mo-Re alloys are strong and ductile as well as weldable. We have chosen to investigate
the strength of a Mo/Re interface.

This work takes us one step further in complexity from ideally lattice-matched interfaces,
since the lattice constants, and indeed crystal structure, are different in these two metals. How-
ever, the c-axis in hcp Re is 4.46A while the length of the face diagonal all I10 in bcc Mo is
4.45A. Therefore an interface in which these two directions are parallel and in the interface
plane will be lattic,ý-matched at least in that direction. The Mo(1 10)/Re(100) interface contains
these two directions, and if they are oriented parallel to each other, the orthogonal direction in the
interface is parallel to the a-axes whose lengths are 3.15A and 2.76A in Mo and Re, respectively.
The misfit along this direction is almost exactly in the ratic 7/8 so that the interface repeats itself
every 7 Mo lattice constants and every 8 Re lattice constants, as illustrated in Figure I.

In the general case of a lattice-mismatched interface, the mismatch occurs in two orthog-
onal directions and the expected equilibrium structure comprises a grid, or two-dimensional net-
work, of misfit dislocations. This is a complicated case to treat; we simplify it by choosing an
interface that is lattice-mismatched in only one direction. The expected structure is then a one-
dimensional array of misfit dislocations similar to an array of edge dislocations in a low-angle-
tilt grain boundary. We expect that this structure will provide much of the essential features of a
lattice-mismatched interface except for the properties of dislocation intersections.

Our strategy is as follows. Taking the atomic arrangement shown in Figure 1 (b--the
unrelaxed, or epitaxial interface-if we allow atoms to move according to the forces acting on
them, how will the structure relax? Presumably the lattice mismatch will contrive to concentrate
itself at the core of a misfit dislocation, which will be an edge dislocation lying in the interface
plane with its line sense 4 parallel to the z-direction, normal to the plane of the paper in Fig-
ure 1 (b). Having done this relaxation, or atomistic simulation we will initially ask two questions:

1. What is the width of the core?

2. What is the size of the Peierls barrier for dislocation motion? In effect, what is the
shear strength of this ideal interface? Later, we can then ask such questions such as
What is the effect of interdiffusion on the strength? and What is the effect of the point
defect dislocation interaction?

3



(a) Juxtapostion of the Re hcp and Mo bcc
lattices. Planes parallel to the interface
are shown shaded. The z-direction is par-
allel to [1i0 J.~ana 10001 Re. In this direc-
tion, the structure repeats itself every
repeat of the hcp c-axis, which is equal in
length to Nr2aw,. The x-direction also lies
in the interface and is parallel to the

a-axes of Mo and Re which differ in length
in the ratio 8/7; the interface is therefore
.mismatched in this direction but repeats

S \ .every 7 Mo and every 8 Re lattice spac-
Z ings a. The y-direction is normal to the

interface and parallel to [11 0)Mo and
1 [010]p. The distance hbetween the two

X crystals is shown as a broken line, The
total energy will be minimized with respect
to h.

* * * * * * * * * (b) A projection of the Mo/Re interface down
S0 0 40 0 0 * * the z-axis of Figure l(a). Only two planes

* * * • • • • * of atoms need be shown in this direction as
• 9 0 0 0 0 * * 0 the structure then repeats itself. These two

* • • • • • • • • planes are shown as large and small
* 0 0atoms. The x-axis points to the right and

* 0 S 0 S • • the figure shows 7 Mo and 8 Re lattice
• •spacings in this direction after which the

structure repeats itself. The y-axis points
upward. Note disregistry in the interplanar

000000000000000 spacing across the interface. The same
Mo atom in both figures is slightly shaded

000000000000000 to emphasize the relation between the two
perspectives.

000000000000000 pesctv.

Figure 1. Mo/Re interface.
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3. TOTAL ENERGY AND INTERATOMIC FORCES

3.1 THE TIGHT-BINDING FORMALISM IN RELATION TO DENSITY FUNCTIONAL THEORY

As mentioned in Section 2, we will require a means to calculate the forces acting upon
Mo and Re atoms in a solid-state assembly of these atoms. A traditional approach would be to
develop a pair-potential or Finnis-Sinclair 4 model to describe the interatomic interactions. This
is not always possible, particularly as we shall see below in the Mo-Re system, and is never reli-
able. We take the view that interatomic interactions are quantum mechanical in nature and can
only be correctly calculated by solving a Schr6dinger equation for the electrons responsible for
bonding in the solid state. Our usual approach is, in fact, a first-principles approach: we use
density functional theory to study the properties of transition metals and alloys. 5,6 in the present
situation, however, a completely first-principles approach is out of the question. First the
ab initio density functional theory is too computer intensive for such complicated problems, and
second, there are difficulties involved in calculating interatomic forces in transition metals.

We have therefore chosen to do our calculations within the tight-binding approximation
to the electronic structure problem. Our approach is similar to that of Sutton et al.7 The way the
tight-binding method works is this: We know which electrons are most responsible for bonding
in the central transition metals (namely the d-electrons), and we know the basic form that the
Hamiltonian must take. So, instead of computing the Hamiltonian self-consistently, which is
very time consuming, we parameterize its matrix elements, after which we solve the Schrbdinger
equation just as in the first-principles approach to obtain eigenvalues ei and eigenvectors ci.

In density functional theory, the (negative) cohesive energy is

EBLPJ = E, ., -I fdrOp(r)-fdrup(r)+E.+E,-E., (1)
£.OCC (

The sum is over occupied eigenvalues; p is the electron density; Oes is the classical electrostatic
potential of the density:*

V 20es 81 (p- p+) , (2)

where p+ is the density of positive charges (nuclei); Exc is the exchange and correlation energy;
t4xc is the exchange and correlation potential:

We will use attomic Rydberg units (a.u.) throughout: h2/2m = I and e2 = 2. 1 Ry = 13.6 eV and the unit of
length, I bohr = 0.529A.
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Eii is the electrostatic pair repulsion between the ion cores, and Eatoms is the total energy of the
free atoms in vacuo.

In density functional theory, e and c are eigenvalues and eigenvectors of the effective,

single-particle Hamiltonian

H = V2 + ueff(r)

(in atomic units). The Schr6dinger equation,
A

H ci = ei ci

must be solved self-consistently with the Poisson equation, Eq. (2), since the effective potential

Veff = 'Pes + Ptxc

depends on the charge density through Eq. (2).

In tight-binding theory the cohesive energy usually takes the general form 7,8

tB I ii + tPp +C , (3)
8.OCC

where E' are the eigenvalues of the parameterized tight-binding Hamiltonian, and Erep + C is sup-
posed to represent the rest of the terms in Eq. (1) with the constant C fixing the zero of energy
with respect to the free atoms. Erep has the form of a pair potential. Sutton et aL7 were able to
justify this form rigorously using the Harris approximation to the self-consistency procedure. In
their approach, the repulsive energy represents the changes in electrostatic and exchange-corre-
lation energies in going from free atoms to the solid state and could be shown (to a very good
approximation) to be a pairwise repulsive energy.

In problems of dissimilar interfaces, it has been argued (see M.W. Finnis1) that a com-
pletely non-self-consistent approach is inappropriate. We therefore use a self-consistent, tight-
binding scheme. 9 We want the Hamiltonian to be able to respond to changes in the potential, at
least in its diagonal matrix elements. This is done in the following way: After solving the
Schrodinger equation for the tight-binding Hamiltonian, there will be accumulations of charge
Aqk on each atom k. These accumulations will give rise to an approximate electrostatic potential
(again in atomic units, e2 = 2)

2
i= , Aqk+2UAqjA¢,aj) irk - r J[

on atom j. This is a sum of two terms: 10 the first is the interatomic, Madelung potential assum-
ing the charge on each atom behaves as a point charge; the second is the intraatomic potential,
which has the opposite sign and represents the energy penalty of heaping charge onto an atom.
The two terms may both be large, but mostly they tend t- cancel each other. 10 ,11 The parameter
U is sometimes called the Hubbard U. ýj is then the elec, ostatic potential at atomic site j that is
seen by an electron described by the tight-binding Hamiltonian. We then adjust the diagonal
elements of the Hamiltonian by adding the •j at each site and solve the Schrtdinger equation
again to obtain a new electrostatic potential. This procedure continues until self-consistency is
reached. In this way, the off-diagonal matrix elements remain fixed by their values determined

6



by the parameterization, while the diagonal matrix elements are determined self-consisc!ntly. At
self-consistency, the electrostatic energy (which must be included in the tight-binding energy) is

I

Because of the large cancellation between terms, this energy is usually so small as to be negligi-
ble, as pointed out by Harrison. 10

Let us now write down the cohesive energy in tight-binding for a transition metal in
which we include only d-electrons in the Hamiltonian. The off-diagonal matrix elements are
transfer integrals between d-orbitals on different sites and are determined by parameterization, LS
discussed below. The diagonal matrix elements are determined self-consistently. We also will
choose a fixed number of d-electrons for each transition metal: The num' -r is N' for the atom
type at the position labeled k. Electrons will transfer between sites self-consistently unless a
charge neutrality condition is imposed, 7 which amounts to setting U = 00; in reality, U is closer to
about 10 eV. The input number of d-electrons will be used in setting the constant C in Eq. (3);
this is only constant, however, in non-selfconsistent tight-binding where the diagonal elements of
the tight-binding Hamiltonian Ha1 are constants. 7 The cohesive energy is

"EB=fi,-fN "+Ep + ',. (4)
i,0CC k

Except for the last term, this is the same expression given by Paxton and Sutton. 12

It is not difficult to differentiate this expression to obtain interatomic forces. Chadi 13 and
Kohyama et al.14 give details. In the present work, we do make the approximation that only the
first term and Erep contribute to the force on an atom.

3.2 PARAMETERIZATION OF THE HAMILTONIAN

We need to find parameters for the Hamiltonian matrix elements and the pair potentials
that make up Erep. We also need values for the Hubbard U parameter. It is in this sense that the
tight-binding method is empirical rather than first-principles and, for this -eason, we will have to
test the parameters we use to ensure that they give sensible results for tthe known properties of
Mo and Re. We can then apply the parameterized Hamiltonian to the problem of the strength
and structure of interfaces with confidence.

The tight-binding theory of transition metals is well developed and goes back some
20 years.15 In fact the method has been practically applied with great success long before Sutton
et al.7 and Foulkes and Haydock 16 made the connection between tight-binding and density func-
tional theories. There are two uncertainties in the method. First is the assumption that the
Hamiltonian can be parameterized and that the remaining energy can be cast in pair-wise form.
Second is the need to find functional forms and parameters for the Hamiltonian matrix elements
and the pair potential. Specifically, these forms and parameters need to depend only on the dis-
tance between the two atoms in question and the types of atoms involved. Implicit in this is the
further assumption that the Hamiltonian is "two-center"; that is, it has no terms invoiving three
atoms simultaneously. This is closely connected with a final assumption, namely that the
Hamiltonian appears in an orthogonal representation. Both nonorthogonality and three-center
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terms are known to vanish to first order Il the band thcorN 01 tran irion rcna• u .. c', !•i• •
first assumption is ngortously defensible from within den~NU functional thcon %A xe ý., : ,,
the selection ot parameters that will yield an adequate descripuont ot the •tn•o• nnciz> it.,
ques-tion. Nevertheless, because this IN an empirical method., e need to, -n.Ie 'Auti• e te•,

of the model to show that it is suitable for use in atormistc simulatiun

Two functional forms are popular for the Htamiltonian niamrx eiemnis an"d the p.a;
potential. In the canonical moxel, the distance dependence is the in.crc filth po,*,,ci .or thc
matrix elements and some larger power (around 10) for the pair 1xtentual \Whcc thile its the
model that derives naturally from band theory', 4 ,e have found in the preresni Aork that it 1a.01-
to reproduce structural energy ordering as described below. Instead, %,e have found fhie .!r•.nod k"
Spanjaard and Desjonqures 18 to be the most robust and reliable, In this modcl, the to -.citer
matrix element of the Hamiltonian connecting two atoms separated by a distance r take% the iform
h.r) = -fe-Jr and a pair potential of the form (pfr) = be"P" is used. Spanjaard and lksi•nsquerc-s
find pIq = 2.95 by comparison with the Rose equation of state and tabulate Value,, (t p and q for
all the transition metals. We do not argue that there is any physical basis for their choife of ;
and q, but we do find that these are sensible parameters. The outcome of any ýaiculaton tniuS
anyway be insensitive to details of the parameter choice, and this is inde-d the c se (,,C en p and
q for Mo and Re, we have only two free parameters for each metal, namel, the pretactor, a•d And
We will adjust b to obtain the correct lattice constant (atomic volume) and fwll be cho-.en to
obtain the same width of the d-band as found in a self--onsistent band calculation 1ýnal\,i thc
ratio of the dd(T:ddzr dd(is given the usual canonical form, 6: .4- 1

We should point out that our model includes only d-electrons in the I amUiltonian T'he
effect of the s-electrons is to provide a positive pressure, which is included in the repuklive
pairwise term. The number of d-electrons Nd is therefore a parameter. not neccessarnl, the nurn
ber of d electrons in the free atom. The cohesive energy in Eq. (4) is therefore not determined
strictly with respect to free atoms but to some vacuum reference state in wi•ch the number of
d-electrons is Nd. The most sensible choice of Nd should conme from exact band calculations. lin
which case, we rind 4.39 d-electrons in Mo and 5.12 in Re. The difference is less than one
because the 5d series have more s electrons, in general, than the 4d (Figure 2. What is startling
is that in Mo the bcc structure is strongly favored, while the bcc structure is very unfaorable irn
Re. Figure 2 shows hcp-fcc and bcc-fcc energy differences calculated using band theory It i,,
well known that what determines the stability of transition metals is simply the number of
d electrons. However, the rapid rise in the bcc-fcc energy difference with a change in ,, of less,
than one cannot be reproduced in a simple tight-binding model without sd-hybndization2( We
will return to some of these points later, but for now we mention that we have tned adiusting %a

and found that the best value for Mo is the band theory value of 4.39, however, if we choose
5.12 in Re. then the bcc structure is stabilized, so that to guarantee the correct ordenng of crxtai
structures we have to set Ng" = 6.

Finally, we need to determine the Hubbard U parameter, and fur this also vve turn to
density functional theory. We use the LMTO-ASA method in the following way. First, \,e
make a self-consistent calculation of the atomic sphere charge density and logarithmic denva-
tives in Mo and Re at equlibrium volume. Keeping the boundary conditions fixed. wse add a
small charge dqd into the d-electron channel and recompute the total energy of the atonmc sphere

8



60-
40 -

Re
0 2O

S-40

Mo
-40-

3 4 5 6 7 8

Nd

Figure 2. Energy differences between the bcc and icc lattices (squares)
and hcp and fcc lattices (hexagons) in the 4d (open syrrtmols)
and 5d (closed symbols) central transition metals (groups 5-
9)19 Both the energies and d-electron numbers are
determined from band theory. Note the rapid destabilization of
the bcc phase over a very small change in Nd This effect
cannot be reproduced in a simple d-band tight-binding model,20

We then use

Ud = d~ E.,

to determine the Coulomb integral U for the d electrons. This is illustrated in Figure 3.

The parameters for Mo and Re thus determined are displayed in Table I. (Those for Re

have been slightly adjusted to make the conditions CRe = "'faMo and aMo/aRe = 8/7 exact.) It
only remains to specify the interactions between dissimilar atoms. For these, we use the
geometric means of the pure atom interactions, which is the correct combination according to
band theory.

Table I

PARAMETERS FOR THE TIGHT-BINDING MODEL FOR Mo AND Re
(All numbers are In atomic units)

p q f b Nd U

Mo 1.9513 0.6621 0.4679 1408.8 4.39 0.854

Re 2.0316 0.6687 0.5900 1893.9 6.00 0.872

9



40 Mo

S20E

S0

-20 I i

40 Re

, 20,

L 0

-20
-0.2 -0.1 0 0.1 0.2

qd

Figure 3. Total energy in the local density approximation
for Mo and Re as a function of a small excess
d-electron charge. The curvature of these curves
for the neutral solid is the Hubbard U parameter.

3.3 TESTS OF THE HAMILTONIAN

As mentioned, we want to test the tight-binding model extensively before applying it to
the Mo/Re interface. The tests fall into two categories: tests of the cohesive and elastic proper-
ties of the equilibrium structure, and tests of structural stability in which the atomic coordination
is radically different from the equilibrium structure. We will also test the finite strain-
deformation behavior. These are described in the following three subsections.

3.3.1 Equilibrium and Cohesive Properties

We do not expect to be able to reproduce the experimental'cohesive energy in our model.
This is contrary to previous claims1 8,2 1 that have been made. Indeed, the cohesive energy does
come out in quite good agreement with experiment if one ignores the spin polarization of the free
atom. However, this spin polarization is very large (about 0.2 Ry) in the central transition metals
and cannot be neglected. If it is included, then we find a cohesive energy of about 2/3 the exper-
imental value. The remaining 1/3 is due to sd hybridization, which is not in the model (see Fig-
ure 4). Obviously, one could then ask, why not include the s-band? And the answer is twofold.

10



,,, A! M O
0.5 -...
0.0

" -0.5 -

-1.5- /AEdc
-2.0- ASA minimum

-2.5 t

2.0 -- d :AEd a.0.7
-0 sp: AFp w O.1

"> 1.0O0.
-1.0,

1 1.5 2
log 2 s (a.u.)

Figure 4. Band theory calculations of the contributions to the cohesive energy (top
panel) and pressure (lower panel) as non-spin-polarized Mo atoms are
brought from infinity in the vacuum together to form the bcc crystal. The
equilibrium volume is indicated by a vertical dotted line; and there we see
that the cohesion is a balance of a band contribution AEbs, which is the first
term in Eq. (1) and renormalization contribution AErc which represents the
other terms in Eq. (1). In the lower panel, we see clearly that the d-electron
contribution to the pressure is negative (attractive) and the contribution from
the free-electron-like sp-electrons is positive. As noted in the text, this latter
effect cannot be reproduced in a simple tight-binding band theory and is
relegated to the repulsive pair-potential. The atomic volume is represented
as the logarithm of the Wigner-Seitz radius s in this plot: the contributions to
the cohesive energy from sp- and d-electrons separate out simply as the
areas under the curves from equilibrium to infinite volume. For further
discussions, see Pettifor22 , Gellot et al. 23 and Anderson et al.24
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Most important, the s-band is free-electron-like and cannot be described in tight-binding- As the
crystal is compressed, the s-electrons are forced closer to the core where their kinetic energy is
raised by orthogonality constraints. The bottom of the s-band then increases with decreasing, vol-
ume and the s-pressure is positive. The d-pressure is negative; indeed, in a simple, orthogonal
tight-binding model, one cannot reproduce a positive band pressure, so that the effect of
s-electrons is best relegated to the repulsive pair term. A second reason to omit the s-band is that
one cannot build a free-electron-like s-band out of tight-binding s-functions. One would need to
include p-orbitals as well, which would make the basis too large for practical purposes.

We do, however, expect to reproduce other equilibrium properties-for example elastic
constants and heats of formation of alloys-in which the free-atom energies cancel out. The
cancellation is a test of the interaction parameters between Mo and Re: we have imagined a
hypothetical MoRe alloy in the ordered bcc (CsCt or B2) structure and used full-potential. self
consistent LMTO theory to compute its lattice constant, elastic constants, and heat of formation.
We have compared these with the predictions of the self-consistent tight-binding model. We
have also used the model to calculate the elastic contants of bcc Mo and the axial ratio of hcp Re
and compared these with experiment. The results are displayed in Table 2.

Table 2

CALCULATED EQUILIBRIUM PROPERTIES COMPARED WITH EXPERIMENT OR
EXACT THEORY (In parentheses)

(The lattice constant a is in bohr, c/a is the hcp axial ratio, C' is (c 12 -c44 )/2 and K is
the bulk modulus-these are given in GPa; H1, the heat of formation, is in
mRy/atom.)

a c/a C C44 K Hf

Mo 5.95 112 126 299

(151) (109) (262)

Re 5.22 1.610

(1.614)

MoRe 5.89 91 143 340 +1.4

(5.89) 1 (89) (217) (299) (+8.5)

The agreement is about what one would expect from a tight-binding theory, and quite
acceptable. The most obvious disrepancies are in MoRe, where tight-binding underestimates c44
and the heat of formation. It is noteworthy that Hf is positive; i.e., the compound does not exist.
and this at least is correctly reproduced. We note also that the elastic constants of pure transition
metals are also determined by subtle band-structure effects that are not perfectly reproduced by
the tight-binding model.

3.3.2 Structural Stability

It is of extreme importance to test the stability of the tight-binding model against the
stability of competing structures, both close-packed fcc, hcp, and bcc and also non-close-packed
structures such as simple hexagonal (hex) and simple cubic (sc). 5 ,20 Energy-volume curves for
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these structures for the 3d transition series are available5 for comparison. Figure 5 ,ho the
curves calculated using the tight-binding model. Apart from absolutc values of the ch,,.e
energies, which are underestimated (as discussed earlier) owing to lack of sd-h' bridiz ation in the
model, the curves agree with first-principles theory very well. In particular, the energy' difter
ences between close-packed phases are in excellent agreement %k ith band theory (F-gure 2 1 the
comparison is shown in Table 3.

Table 3

ENERGY DIFFERENCES (In mRy/atom)
BETWEEN THE CLOSE-PACKED PHASES OF

Mo AND Re

(Results from the tight-binding model are compared
with first-principles band theory, 19 in parentheses.)

bcc-fcc hcp-fcc

Mo -27.1 +3.0

(-34.0) (+2.6)

Re +28.3 -2,2

(+26.4) (-5.9)

Mo Re
-0.2

Sc
E• hex

bcc

-0.4 I I
0.8 1.0 1.2 0.8 1.0 1.2

Q/Qo Q/Qo

Figure 5. Cohesive energy versus atomic volume Q. "0 is the equilibrium
volume. The curves for Mo and Re are computed using the tight-
binding model. Apart from errors in the absolute cohesive
energy due to neglect of sd-hybridization, they are in very good
agreement with what one would expect from a first-principles
calculation.

5
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3.3.3 Finite Deformations

As a final test of our model, we calculate the energy as a function of homogeneous latticc
deformation. Here, the bcc lattice is given a simple shear on the (112) plane in the 11i II direc-
tion until the lattice shears into itself. This is a homogeneous twinning shear. First-principles
calculations of the energy versus shear are available for comparison, 2 5 which is shown in Fig-
ure 6.

0.1 - LDA
. TB

S0.075

0.05-

0.025 - 0 0

-1 -0.75 -0.5 -0.25 0.25 0.5
X/S

Figure 6. Energy density, W, versus shear xis. For details see the
first-principles calculations of Paxton et al25. The
agreement between tight-binding and first-principles
calculations is excellent in the twinning branch, but rather
poorer in the antitwinning branch.

At last, we find quite a large discrepancy between the model and first principles, namely
the antitwinning branch of the energy-shear curve in Mo. This is a very large distortion of the
lattice away from equilibrium, so the disagreement is not too disturbing. It is well, however, that
we have pushed our model far enough to find the point at which it eventually breaks down. Even
classical potentials are rarely tested as thoroughly as we have tested the tight-binding model here.
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4. RELAXATION AND ATOMIC STRUCTURE

Armed with a quantum mechanical model of the Mo-Re system, we go ahead and com-
pute the atomic structure of our chosen interface. This is done by setting up the unrelaxed inter-
face in [Figure 1 (b)], calculating the forces acting between the atoms, and relaxing their positions
in a molecular statics algorithm. 12 Even using a simplified quantum mechanical model, this is a
very time-consuming business.

We do our calculations in supercells so that we can exploit Bloch's theorem in evaluating
the eigenvalue sum in Eq. (4). We do this by a tetrahedron integration over the Brillouin zone,
using 72 k-points in the whole zone. The size of the supercells is such that there are eight layers
of Re atoms and five layers of Mo before the cell repeats itself along the y-direction (Figure 1).
We have done some tests using larger cells and convinced ourselves that the electronic structure
is converged at this supercell size. Artificial elastic interactions will remain and persist to very
large cell sizes, and we have to live with them.

Because of the complexity of the problem, we are forced to make some further approxi-
mations. The separation h between the crystals should, ideally, be relaxed along with the atom
positions. Instead, we have determined h for the unrelaxed cell and used that value (4.63 a.u.) as
fixed. All relaxations subsequently are at constant volume. We also do the self-consistency pru-
cedure separately from the atomic relaxations. That is to say, we first relax the positions and
then make the Hamiltonian self-consistent; we have found that further relaxations are not signifi-
cant. Finally, we calculate the total energy of the supercell using twice the number of k-points.

The range of the Hamiltonian matrix elements h(r) and the pair potential p(r) are usually
taken as rather short in tight-binding theory. However, we have chosen not to truncate these until
after fifth neighbors in the bcc structure (at ",habcc) and sixth neighbors in the hcp structure (at
2 ahcp). This actually improved the band structure somewhat; more important, it devolves from
us the responsibility of choosing what are and are not neighbors since, at the cut-off, the matrix
elements are insignificantly small. Because we are using a k-space method, the longer range of
the interactions does not affect the computing time; in a real-space approach such as the recur-
sion method this would not be economical.

4.1 THE MISFIT DISLOCATION

The relaxed structure of the Mo/Re interface from Figure l(b) is shown in Figure 7. As
expected, to the left and right parts of the interface, the lack of registry (disregistry) between
atomic planes across the interface has improved at the expense of the appearance of a dislocation
core at the center. In other words, the disregistry, which is evenly distributed across the epitaxial
interface, has become localized at the core of a misfit dislocation after atomic relaxation. As far
as we know, this is the first quantum mechanical simulation of a dislocation core structure in
transition metals. We therefore regard this as a significant step forward. Already we can answer
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Figure 7. Structure of the relaxed interface. The shaded
atom corresponds to that in Figure 1(b) and
appears at the core of the misfit dislocation.

our first question of Section 2, as to the width of the core. The width is roughly half the disloca-
tion spacing (there is, of course, an infinite array of dislocations generated by the periodicity
along the x-axis).

Let us make a few comments about Figure 7. The relaxation of the Mo layer is confined
to some bending of the atomic planes about the z-axis due to long-range elastic effects. These
are a.-tifacts of the supercell size mentioned above. The distortions at the core are otherwise con-
fined to the Re layer which moves closer to the Mo in the region of good registry, and away from
the Mo at the dislocation core. Therefore, contrary to the Peierls model, there is some bending of
the atomic planes.

The position at the interface indicated with a shaded Mo atom in Figure l(a) turns out to
be the center of the core. This is in fact the lowest-energy position for the dislocation, as we
shall see below, indicating the position of the Peierls valley. In this alignment, Mo and Re atoms
face each other across the interface in the same atomic plane along the z-axis. The interface pre-
fers to remain in registry at positions where Mo and Re atoms face each other in atomic planes at
different distances along the z-axis. In other words, referring to Figure 1 (b), the interface prefers
to maintain the middle region in registry and concentrate the misfit at the edge regions. Put yet
another way, referring to Figure 1(a) the body-centering atom, rather than sitting opposite the
center of the (1010) face (as shown), prefers to sit along the edge of that face. This is because in
the situation shown in Figure 1(a), the shaded Mo atom is closer to its opposite Re atom than the
nearest-neighbor distance in the pure metals. The edges of the interface in Figure 1 (b) are there-
fore the high-energy regions and the center is a low-energy region since opposite Mo and Re
atoms are in different layers along the z-axis and therefore not too close together. Thus, when
the structure relaxes, the high-energy part becomes the core of the dislocation while the the low-
energy part remain in registry. Figure 1 (b) also represents the lowest-energy configuration for
the dislocation. The core lies in a Peierls valley, since if it is to move in the x-direction the
disregistry must shift into the region of low energy, which costs energy. Section 4.2 discusses
what happens when we try to move the dislocation.
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4.2 THE PEIERLS ENERGY

In a series of simulations in molecular statics, we apply successive shear strains to the
atomic cell. It is clear from a study of Figure 1(b) that if we displace the (upper) Re block with
respect to the (lower) Mo block by a vector of length b = aMo - aRe = 0.73 bohr in the
x-direction, then we would recover an identical atomic structure. This is the translational peri-
odicity of the interface in the x-direction. In the process, the dislocation will move through a
distance b, achieving a plastic strain of the interface. The energy barrier involved in this process
is the Peierls energy of the misfit dislocation.

Beginning with the relaxed structurt shown in Figure 7, we apply a strain of 0.2b by
adjusting the boundary conditions of the supercell (see Paxton 26 for details of how this is done).
We again relax the atomic positions, make the Hamiltonian self-consistent and, obtain the total
energy of the cell for this displacement. Using the new, sheared structure, we apply another
strain of 0.1b and repeat the procedure. We continue to shear the cell by increments of 0. lb,
relaxing the positions and the Hamiltonian at each step. We obtain a plot of the energy of the
cell versus shear, as shown in Figure 8. We show displacements up to only 0.4b; for larger val-
ues we have encountered problems in determining the global minimum from a number of
metastable states. By symmetry, however, we know that the curve must be symmetrical about
b/2 so only that value of the displacement is lacking in the present work.

We can arrive at a very important conclusion from these calculations. As the dislocation
moves from one Peierls valley to the next (a distance b away) the energy barrier AE is on the
order of 3 mRv. The displacement is b/2 so that the stress is, very approximately,

2AE

where Acell is the area of the interface in the unit cell. This is about 0.4 GPa which is more than
10 times smaller than the theoretical strength, which must be on the order of 10-20 GPa. There-
fore, while the presence of the dislocation clearly reduces the strength of the interface, it does not
have as strong an effect as a lattice dislocation, which is expected to reduce the strength of a
crystal by several orders of magnitude from the theoretical strength.

Because the tight-binding model can reproduce the theoretical strength of Mo very well
compared with a first-principles calculation (see Figure 6) we regard the above result as signifi-
cant. We repeat our conclusion: the misfit dislocation has the effect of reducing the strength of
the interface from the Frenkel theoretical strength, although not by as much as would be expected
from a lattice dislocation in a single crystal. Therefore, the presence of misfit dislocations in an
otherwise perfect interface is not expected to reduce the strength significantly. On the other hand
there is a notable reduction in the theoretical strength compared with a lattice matched interface.

17



5

4

3>N, ....0

00

0.2 0.4
Displacement/b

Figure 8. Energy E of the interface relative to that of the
undisplaced structure EO of Figure 7. The
displacement is in units of the translational period
b of the interface.
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5. PLAN OF FUTURE WORK

We are confident that the simple tight-binding model is adequate for the study of central
transition-metal interfaces. If we want to study transition-metal aluminide alloys, metal-ceramic
interfaces, or nonmetal impurities, then we would need to use first-principles density functional
theory. As we will see (Section 6) our program of work to develop a first-principles molecular
dynamics for all elements in the Periodic Table is sufficiently far ahead for us to regard this
extension as becoming feasible in the coming year.

Meanwhile, there is plenty we can learn about dissimilar metal interfaces in general from
our tight-binding work. Our plan for future work includes the following:

1. We would like to extend our implementation of the tight-binding method to include
molecular dynamics as well as statics. This can be easily done.

2. Now that we know the structure and have an estimate of the strength of the ideal
Mo/Re interface, we need to investigate the effect of interdiffusion. This is the real-
istic case encountered in diffusion bonding, and we want to know how the intermix-
ing of the atoms affects the properties of the interface.

3. We have a way of studying interface dislocations in general, now that we have this
nice model of a dislocation which, since it is an interfacial dislocation, has no long-
range strain field. We would like to use this model system to study the dislocation
point-defect interaction which has not yet been investigated using a serious quantum
mechanical model. 26
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6. ADVANCES TOWARDS REAL-SPACE, FIRST-PRINCIPLES
MOLECULAR DYNAMICS

As we have mentioned, the tight-binding method is suitable only in certain favorable
cases, for example silicon, germanium, and the central transition metals. Eventually we want to
be free to study any system, including grain boundary impurities and the metal-ceramic interface.
To this end, some of our time under this contract has been spent on continuing development of
our new real-space, total-energy method, which is mostly being supported under a separate ONR
contract. In this final section, we report on our progress. We begin by reviewing the state of the
art in first-principles molecular dynamics.

Extensive research has now established that it is possible to calculate in density func-
tional theory (DFT), and with fairly high accuracy (often comparable to thc uncertainties in mea-
surement), a broad range of mechanical and structural properties of most solids. DFT is, in
principle, exact: solving it is completely equivalent to solving the many-body Schrddinger
equation. The exact functional is unknown, but the important advances in this area have been
made using a local approximation to the exact functional. The local density approximation
(LDA) contains no empirical or adjustable parameters, but makes it possible to obtain an explicit
form for the Schr'kdinger equation that recasts the problem as a set of independent electrons mov-
ing in an effective one-electron potential. Its success in predicting-from first principles-
mechanical properties such as structural energy differences, defect energies, and shear moduli is
remarkable.

Solution of the LDA is technically difficult and computationally demanding. While
many problems have been successfully broached within the LDA, in practice limits to computa-
tional capacity sharply circumscribe what it can feasibly address. Tlii difficulty, one of practice
rather than of principle, is compounded because the computational effort grows rapidly with the
complexity of the calculation. The one-electron Hamiltonian H is projected orto a basis set, and

Aobtaining the eigenvalues of H amounts to the solution of a linear algebraic eigenvalue problem.
The size of the basis, and thus of H, grows in proportion to the number of inequivalent atoms n,
making the operations count increase as the cube of n. It is now routine to study systems with
fewer than twenty or so inequivalent atoms, but the n3 barrier rapidly sets in beyond this point.
Even this number is quite sufficient to study in detail many materials properties, such as those
needed to compute phase diagrams. On the other hand, two important advances are rapidly
widening the scope of feasible applications of the LDA. The first has to do with massive paral-
lelization of ctnputer hardware, making the next generation of computers several orders of
magnitude more powerful than present-day ones. Fortunately, most electronic structure methods
are quite amenable to parallelization; this is especially so with respect to the methods described
in the following subsections. The second has to do with significant advances in algorithms used
to solve the single-particle Schr'odinger equation.
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6.1 NEW DEVELOPMENTS IN ELECTRONIC STRUCTURE ALGORITHMS

Because of the immense potential of the LDA to realistically calculate practical material
properties, there has been intensive effort to develop algorithms to solve the LI)A efficiently.
Car and Parrinello 27 precipitated the present efforts by proposing an algorithm to pursue molecu-
lar dynamics simulations within the LDA, by introducing a technique that integrates the nuclear
and electronic motion into a single step. While their paper attracted a great deal of attention for
this reason, actually the most important result of their paper was the introduction of an ingenious
scheme to obtain, for a plane-wave (PW) basis, eigenvectors of the Hamiltonian much more
efficiently than previously. They exploited the fact that for a PW basis, the kinetic-energy part of
the Hamiltonian is diagonal in k-space and the potential is diagonal in real-space. Using a fast
Fourier transform to transform a trial eigenvector between the two spaces, they could operate the
Hamiltonian on a trial eigenvector far more efficiently than before. Using an iterative scheme to
generate the eigenvectors obviates the most costly of the n3 bottlenecks in solving the band-
structure problem. To iterate M trial eigenvectors, X, in a PW basis of dimension N, the opera-

A

tions count to make HI is O(NM In N). In this procedure, higher lying eigenstates must be
orthogonalized to lower ones using a Gram-Schmidt step, which requires O(M2N) operations. M
and N are both proportional to the number of atoms n, so the n3 bottleneck remains; on a PW
basis, however, N)M and this method is much more efficient than conventional diagonalhzation
schemes, which require an operations count of order N3. For moderately sized systems, the
Gram-Schmidt step does not seem to dominate the total time. More efficient schemes have since
been introduced that allow the iteration of a trial eigenvector to proceed to the eigenstate in fewer
steps.28

6.2 REAL-SPACE HAMILTONIANS

The Car-Parrinello method (and its modem-day descendants 28) has been successful for
systems of moderate size, but is not generally applicable; in particular, it relies on pseudopoten-
tial approximations that make it ill suited to many applications with elements outside of columns
III-VII in the Periodic Table. This is a dynamic and rapidly changing subject, to which we can-
not do justice here. We will briefly describe new developments we have been pursuing, that
show great promise for yet more significant improvements in efficiency. The n3 barrier is not
one of principlc, since the electronic Hamiltonian is approximately local: well-separated elec-
trons are coupled together only by their (classical) electrostatic interaction and it is unnecessary,
in principle, to couple their electronic motion. Thus it must be possible, in principle, to generate
solutions to the LDA that increase only linearly with the number of atoms.

By construction, the PW basis is nonlocal, and is not suited to techniques that exploit the
local nature of the Hamiltonian. For this, a real-space basis is needed. Real-space basis sets
have the following advantages: (1) They are tailored to the potential of the system; thus they are
much smaller and more efficient than a PW basis, and the decomposition of eigenstates into local
orbitals helps provide physical insight into the problem. (2) Unlike the PW basis, they are gen-
erally applicable, and can be equally well adapted to "deep" potentials, such as are encountered
in transition metals. (3) A real-space approach is optimally parallelizable. As is well known, the
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primary obstacle to massively parallel algorithim, Arisc'. 1tRAM dClay s I0 F-:htfjkA )L 'ý 41111..W:

cations. They limit the ocrall efficienc:y ot ro,,t algorithimls to a small trac uocl ot .1 ,tt,
theoretical efficiency. Fotunate! , algorithw,, using a real-space basis ca:n bc h.,h1\ . '

grained, since a single node can be assigned to one or a "mall number of a atom f.&rd tcqju;ec
minimal communication with other nodc,. t4 ) Using a rcal-space basis, it is p'-,cin ,rm.i
pie, to exploit the locality of the Hamiltoni-an and make the total conmputation titte in -rxs.e o0111"
linearly with the size of the system. Indeed, the recursion method is, a stirctl. real-sp.•r tc,.h

nique, for which the computation time increases only as N With regard to paralktliz-aton, tlhc
recursion method needs no interprocessor communication at all (with the minor e'xceptkon,0,1
finding the Fermi level of the system as a w hole at the end of ant iteration V

While the recursion method may be a practicable alternative for large systemcs, Iihndtng yci
better ways to diagonalize a real-space Hamiltonian is one key pan of our program F:or exam.
pie, it is possible to adapt some of the conjugate-gradient diagonalization techniques2- in the P1W
basis to real-space methods, and once again avoid the largest of the n1 bottlenecks A real-spacc
Hamiltonian is local and thus sparse for a large syssem. For a large system, the operatiuon count
to make HX increases with OIMN) in a real-space basis. Both a PW basis and a real-spa:ce hasi,,
have a Gram-Schmidt orthogoiialization step which increases as O(M2.V', Iioskeser N i. an orter
of magnitude smaller in a real-space basis. Still other approaches can bc considered, and stud\
of these forms one key aspect of our research.

6.3 CHOICE OF REAL-SPACE HAMILTONIANS

There are two important drawbacks to a real-space Htanmiltonian. The first is that actuall.,
constructing such a basis Io} and calculating matrix elements for it is in general quite difficult.
indeed much more complicated than for a PW basis. Any method must carry out the foll- ing
steps: (1) represent the charge density and solve Poisson's equation for the elecLrostatic poten-
tial: (2) evaluate matrix elements of the Hamiltonian (0 IRK), and (3) sum an appropnate linear
combination of wave function products (o, io,,) to generate the output densitv. All of these step,,
are simply done using plane waves, but not for general functions Q. A second major drav, hack is
that. owing to the minimal basis, internuclear forces cannot be reliably calculated from the
Hellmann-Feynman theorem, even though knowledge of these forces is essential for molecular
dynamics or to relax a large configuration of atoms to their equilibrium positions.

One way to tackle these obstacles is to represent the charge density in PW. but use a local
basis for the Hamiltonian. Most real-space methods use this technique. and wNe employ such a
procedure in the present work. For the Hamiltonian. we employ the method of Linear Muffin-
Tin Orbitals invented by Andersen. 24 Because its orbitals are tailored to the potential of the
solid, the LMTO method employs the most intelligent basis set of all electronic structure meth-
ods. Near the nuclei, the wave function is represented numerically and solves the Schrndinger
equation essentially exactly. In the interstitial region. the kinetic energy of the envelope func-
tions is customarily set to zero, which is close to the optimal average value for close-packed
solids.

An alternative technique. very recently developed by Methfessel and van Schilfgaarde
(manusc-ipt in preparation) uses a strictly real-space method, in which both the basis and the
density are represented as spatially local, atom-centered functions. This new technique is highly'
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efficient; to date a molecular program has been completed in which it is possible to calculate the
eigenstates of small molecules in a few seconds on a workstation. Htere we sketch only the
essentials of the method; the paper will be published shortly. In any real-space method, a diffi-
culty immediately arises when attempting to represent the electron density p which is :alculated
from the sum of products of basis functions. There is no convenient analytical representation of
Hankel function products that the LMTO method employs (as there is in products of plane
waves); which is why most methods resort to plane waves to represent the density. The kernel of
the present method centers around an approximate-but analytical-representation of the prod-
ucts of two P -kel functions centered on different sites. The new method approximates such a
product as a linear combination of Hankel functions centered on the two separate sites. (This
approximation is done once and for all by tabulating a least-squares fit of Hankel function prod-
ucts, so that mapping a product of two functions is essentially a table look-up.) Thus the density
p can be mapped into a linear combination of atom-centered Hankel functions. In a like manner,
matrix elements of the potential (o•jv0,) are easily calculated, once again using the mapping

As with plane-wave representations, the error in the approximation can be made arbitrar-
ily small by increasing the number of functions that approximate a product. The key advantage
to this representation is that atom-centered Hankel functions are strictly local: they do not
extend over all space as do plane waves. Table 4 shows some calculated results for selected
small molecules.

Table 4

COMPARISON OF STRUCTURAL PROPERTIES IN SELECTED MOLECULES

(0 are bond angles and co are vibrational frequencies)

d (au) E (eV) 0 (deg) o) (cm-1)

Molecule Calc Expt Calc Expt Calc Expt Caic Expt

N2  2.074 2.076 11.34 9.8 - - 2380 2360

H2  1.444 1.410 4.91 4.5 - - 4270 4400

Cu 2  4.124 - 2.97 2.1 - - 291 330

H20 1.833 1.811 11.46 9.5 104.5 104.5 1560;3700 1600;3760

H2S 2.562 2.543 8.95 7.5 91.3 92.3 - -

H2Se 2.803 2.779 8.28 - 90.3 91.0 - -

Also with this method, we have found how to make an exact differention of the LDA
Hamiltonian, and thus obtain a proper expression for the forces without resorting to the
Hellmann-Feynman (force) theorem. The usual Hellmann-Feynman theorem uses the fact that,
at self-consistency, the total energy is stationary to first order with respect to changes in the
electron density. Minimal basis sets incur errors, however, because the basis moves with virtual
displacements of the nuclei. Our force theorem overcomes this by allowing the basis and charge
density to shift rigidly with nuclear displacements. We can do so because they are represented as
a superposition of atom-centered functions. Thus we obtain additional terms, and the resulting
expression is an essentially exact expression for the force.
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To summarize, our new method has several features that can combine the best of many
existing electronic structure techniques. It uses an efficient, minimal basis, but at the same time
can calculate forces precisely. As a real-space method, it can be exploited to render it highly
efficient, and yet accurate.

As yet, we only have a real-space molecule program. The next step is to make a solid-
state program based on the same principles. We anticipate that when this is completed in the
coming months, we will be able to do molecular dynamics simulations of complex transition
metal and metal-ceramic systems which are as rapid as using empirical tight-binding, but are
nonetheless completely first-principles in approach.
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